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Al1Itnct-The general theory is established for the application of the body force method to the
stress concentration analysis of an axi-symmetrical body under bending. Determination of fun
damental solutions in bending are not self-evident as in tension or torsion problems. However.
comparing the boundary conditions to be satisfied along circumferential position of imqinary
boundary and stress fields due to the body force distributed trigonometrically along a ring around
the axis. it is found that three kinds of fundamental solutions are necessary and sufficient. Thus.
the axi-symmetrical problem could be treated in the similar manner as two-dimensional
problems. .

For example. problems of a 'spheroidal cavity and a troidal cavity in an infinite body under
bending are solved numerically. The error in the former problem is less than 0.07%. The results
of the latter problem agree with the exact solution in the two limiting cases; a deep hyperbolic
notch and two dimensional elliptic hole.

I. INTRODUCTION

The stress analysis of an axi-symmetric body under bending is in general more difficult
than tension and torsion. The recent development of the finite element method (FEM)
has enabled us to obtain the approximate .solution for almost all elasticity problems.
However, actually FEM is not suitable for systematic calculation of the accurate stress
concentration factors for various combinations of shapes and dimensions. A typical
problem of an axi-symmetric body under bending, is the stress concentration problem
of the cylindrical bar with a circumferential notch which is often used in the rotating
bending fatigue test. Neuber[I-3] determined approximately the stress concentration
factors (SeF) of this problem. However, the exact solutions have been expected for
more advanced researches on fatigue and fracture strength of notched specimens[4].

In the present paper, the basic theory of the Qody force method[S, 6] is developed
for the stress concentration analysis of an axi-symmetrical body and a couple of ex
amples, a spheroidal cavity and a troidal cavity, are solved. The accuracies in the case
of spheroidal cavity and in the limiting case of a troidal cavity are discussed in com
parison with Neuber's exact solutions. First of all, the theories of tension[7, 8] and
torsion[9) analyses of an axi-symiDetrical body are reviewed, and then the method of
finding the three fundamental solutions that are necessary for the satisfaction of bound
ary conditions will be explained. Since such fundamental solutions cannot be found
self-evidently in bending problems unlike tension and torsion problems, the stress fields
due to various fundamental solutions must be investigated carefully. However, once
the computer program is completed using the fundamental solutions, the accurate stress
concentration factors for the systematic change of shapes and dimensions can be easily
obtained and the tables and charts for design can also be made.
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2. THEORY

The principle of the body force method is simply based on the superposition of
the stress field (Green's function) due to a point force applied in the infinite or semi
infinite body. The densities of the point forces distributed along imaginary boundaries
are determined considering the boun<;tary conditions. However, the method of super
position or the way of point force distribution must be carefully chosen considering
the physical meaning of the stress and displacement field. The basic principle of the
body force method is explained in Ref. [S, 6]. In the present paper. the application of
the method is explained with emphasis on the three dimensional bending analysis of
an axially symmetric body.

2.1. Fundamental solution for the analysis of tension and torsion problem
The body force method was originally proposed as the numerical method solving

two-dimensional stress problem[S]. Although in principle it can be applied to arbitrary
problems, the special improvement and extension in individual problems are necessary
in order to obtain accurate results. In the early stage of the development. the body
force method has been applied to various two-dimensional problems in which (i) the
fundamental solution is a stress field due to a point force applied at a point of an infinite
plate and (ii) the prospective boundaries are divided into finite straight or curved di
visions, the midpoints of which are used for the representative points where the stress
boundary conditions are satisfied. The same method was applied to several three
dimensional axi-symmetrical problems[7-9], in which (i)'" the stress field due to the
continuously distributed point forces along a ring around the axis of symmetry was
used as the fundamental solutions instead of (i).

It is easily understood that the point force continuously distributed in radial and
axial direction (Fig. I (a), (b» along a ring around the axis of symmetry gives the
fundamental solutions for tension problems[7, 8] and those distributed in circumfer
ential direction (Fig. 1 (c» give the fundamental solutions for torsion problems[9]. The
procedure (ii) in two-dimensional case can also be used, because if the boundary con
ditions is satisfied at one point (the marked point 0 in Fig. l(d» of the circumference,
it is naturally satisfied at all points of the circumference from axial symmetry. Then.
the extension from plane problem to axially symmetric problem is established com
pleting two procedure. (i)* distributing point forces continuously along a ring around
the axis of symmetry. and (ii)* satisfying the boundary conditions at all points of one
circumference.

Thus, if the satisfaction of the boundary conditions at all points of one circum
ference is possible in bending problems of an axially symmetric body, the calculation
procedur~ becomes almost similar to those previously adopted. It depends on whether
we can find the fundamental solutions. instead of (i) and (i)"'. that satisfy the axially
asymmetric boundary conditions at all points of one circumference. However, unlike
plane and axially symmetric problems. such fundamental solution can not be found
self-evidently. The properties of the fundamental solutions required in the bending
analysis of an axially symmetric body are discussed in the next section.

2.2. The fundamental solutions required in the analysis of an axi-symmetrical body
under bending

Imagine an infinite body subjected to bending moment at infinity. If we take z axis
as the axis of symmetry and apply the bending moment around the radial axis of a =
-rr/2 in Figs. 2 and 3. the stresses far from the origin are expressed in the following
equation.

r
<T~ = <To - cos 9

a

<T,. = <Til = T,.~ = Trll = Tll~ = 0,
(1)

where <To is the constant which corresponds to the magnitude of bending stress and a
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Fig. I. Fundamental solution for the analysis of tension «a) and (b)) and torsion (c) problems
and the prospective boundaries divided into finite divisions (d).

is the representative dimension. Since the stress CTz at infinity varies in the type of cos
e. the stress CTz induced by point forces distributed in z-direction (the ring force; a
fundamental solution) should also vary in the type of cos e on the circumference of
radius r and height z. Then. we suppose the intensities of two ring forces in the form
of cos <1>: one is in the z-direction (Fig. 2) and the other is in the r-direction (Fig. 3)
that are applied on the circumference of radius t and z-coordinate t. (t. $, t) is used
as the cylindrical coordinates of the points where the forces are applied. In addition
to the ring force with intensity of cos <I> in radial direction is also necessary as the
fundamental solution. because the stresses in the r-direction induced by the ring force
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Fig. 2. A ring force with intensity cos <!> in the z-direction.
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Fig. 3. A ring force with intensity cos <!> in the '-direction.

in the z-direction must be cancelled. Thus, we can find that the ring force in either
direction induces the stresses as the type of eqn (2) at (r, e, z). (r, e, z) is the coordinate
where the stresses are" expected to be calculated.

CTr = 'fl(r, t, z, ,) cos 0, CTII = 12(r, t, Z, ,) cos 0, CTz = 13(r, t, z, ,) cos 0 (2)

Trz = 14(r, t, z,~) cos e, Tre = Is(r, t, Z, ,) sin e, 'Tllz = 16(r, t, Z, ,) sin e.

Equation (2) indicates that the stresses at (r, 9, z) in the infinite body can be determined
by multiplying those at (r, 0, z) by cos O. And we can see that the normal stresses CTn

and the shearing stress 'Tnt at a point of an arbitrary curved surface imagined in the
infinite body, also vary in the type of cos e along the circumference as shown in eqn
(3).

CTn = CTr cos2
"', + CTz sin2

"'I + 2Trz sin "', cos "'I

= (/. cos2"'I + 13 sin2"'I + 2/4 sin "'I cos "'t> cosO

'Tnt = (-CTr + CTz ) sin "'I cos "'I + 'Trz(cos2"'I - sin
2"'t>

= {( - II + h) sin "'I cos "'I + 14(COS2 "'I - sin2 "'t>} cos e

(3)

where, "', is the angle between the r-axis and the normal direction of the surface.
Therefore, if the condition CTn = 'Tnt = 0 are satisfied at r = r, 0 = O. the same boundary
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Fig. 4. A ring force with intensity sin ell in the 6-direction.

conditions are automatically satisfied at all points of a "# 0 on the same radius r = r.
Concerning the condition CTnand Tnt' it looks like that the combinations of these two
kinds of ring forces applied in z and r direction are sufficient for the satisfaction of the
boundary conditions. However, actually the combinations of ring forces of the types
of Figs. 2 and 3 are insufficient, because the application of them induces the shearing
stress Tne (Le. Tre and Tez) at the boundary which must become the free surface. The
shearing stress Tne is expressed by the following equation.

Tne = Tre cos 1\11 + Tez sin 1\11

= (fs cos 1\11 + f6 sin 1\11) sin a.
(4)

As seen from eqn (4), Tne varies in the type ofsin aon the radius r = r. Then, it becomes
necessary to apply the tangential ring force that changes in type of sin ~ on the radius
r = r as shown in Fig. 4. The application of the ring force of the type of Fig. 4 newly
induces the stresses CTro CTz and Trz that should have the type of eqn (2) again in order
to satisfy the boundary conditions. It is confirmed that the application of the ring forces
of the type of Fig. 4 induces the stress field in the type of eqn (2).

The above discussion leads us to the conclusion that the three types of ring forces
in Figs. 2-4 are necessary and sufficient for the satisfaction of the boundary conditions
of the bending problems of axially symmetric body. In this way, we can use the cal
culation procedure similar to tension or torsion problems. Therefore, we have only to
notice the stresses (CTro CTe, CTz , Trz ) at the section a = 0 and the stresses (Tre, Tez) at the
section a = 'f't/2 in order to satisfy the boundary conditions, that is, we have only to
treat the functions fl-f6 in eqn (2) that correspond to the amplitudes of the stresses
along circumferences. Thus, the numerical procedure has been established as similar
one to two~dimensional cases and the numbers of unknowns are three in one division
of Fig. 1(d).

3. THE FUNDAMENTAL SOLUTIONS

When a point force acts at a point (t, ~, ,) in an infinite body, the stresses at
(I', a, z) are given by eqn (5)[10], where (Fro Fe, Fz) mean the forces and
(ufr-orrf, ufe-orr~, uf~-orrn do stresses in r, a and z direction.

uf· = B,[O - 2v)R- 3
[ -I' cos(<p - 9) + t{2 cos2(<p - a) - I}]

- 3R - 5{r cos(<p - 9) - tHr - t cos(<p - 9W]

ufr = B1[O - 2v)R- 3[r cos(lp - a) - t{2 cos2(<p - a) - 1 }]

- 3 R - 5{ -,. cos(lp - a) + t}t2 sin2(<p - a)]
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ufr = B([(l - 2 v)R- 3
- 3(z - ,)R-5]{r cos(lp - e) - t}

Tf{ = B.(z - m-(I - 2v)R- 3 cos(lp - e) - 3R- 5{r cos(lp - e) - t}

x {r - t cos(lp - em
,.;; = B1[(I - 2 v)R- 3 sin(lp - e){2t cos(lp - e) - r}

+ 3R-5 t sin(lp - e){r cos(lp - e) - tHr - t cos(lp - em
Tfz = B.(z - m-(I - 2v)R- 3 sin(lp - e) + 3R- 5{r cOS(lp - e) - t}

t sin(lp - e)] (5a)

ufo = B2[(1 - 2 v)R- 3 sin(lp - e){r - 2t cos(lp - e)}

+ 3 R-5r sin(lp - e){r - t cos(lp - eW]
a{o = B2[(1 - 2v)R- 3 sin(lp - e){ -r + 2 t cos(lp - e)} + 3R-5rt'~ sin3(lp - en
ufO = B2[(1 - 2v)R- 3 - 3(z - ,)2R-5]{ -r sin(lp - e)}

~o = B2(z - ')[(1 - 2v)R- 3 sin(lp - e) + 3R- 5rsin(lp - e){r - t cos(lp - em
~ = B2[-(l - 2v)R- 3[rcos(lp - 6) - t{2cos2(lp - e)- I}]

- 3 R-5rt sin2(lp - 6){r - t cos(lp - 6m

Tf: = B2(z - ,){ -(1 - 2v)R- 3 cos(lp - 6) - 3R- 5rt sin2(lp - 6)} (5b)

uf· = B3(z - m(1 - 2v)R- 3
- 3R- 5{r - t cos(lp - 6W]

a{' = B3(z - ')[(1 - 2v)R- 3
- 3R- 5t2 sin2(lp - 6)]

uf· = B3(z - m-(1 - 2v)R- 3
- 3R-5(z - ,)2]

~. = B3{ -(I - 2v)R- 3 - 3(z - ,)2R- 5Hr - t cOS(lp - 6)}

Tfe· = B3[3(z - ,)R- 5t sin(lp - 6){r - t cos(lp - 6m

Tfi = B3{ - (l - 2v)R - 3 - 3(z - ,?R - 5H - t sin(lp - 6)} (5c)

F.
B3 = ~

81T(1 - v)
(5d)

R2 = r + t2 + (z - ,? - 2rt cos(lp - e). (5e)

In eqn (5), it should be noticed that the forces Fn FII and F: are applied on the
infinitestimal curved area tdcl>ds (line element C in Fig. 5) in the following equation

In eqn (5a) and eqn (5c), the stresses (<Tn <Til, <T:, Tr:) due to Fr and F: are the even
functions of lp' (= lp - 6), while the stresses (Tri!, Til:) are the odd functions of lp'. On
the contrary, in eqn (5b) the stresses (<Tr , <Til, <T:, T r:) due to Fa are the odd functions
of lp', while the stress (Tri!, TIIZ) are the even functions of lp'. Taking eqn (5f) into
consideration, the fundamental solutions (~;r', rrfj-r', ... , -r1:';*) can be obtained inte
grating eqn (5a)-eqn (5c) in which F n Fa and F.. are replaced by t cos lp or t sin lp
according to eqn (5f). If we notice the following equation.

cos lp = cos(lp' + 6) = cos lp' cos 6 - sin lp' sin 6

sin lp = sin(lp' + 0) = sin lp' cos 0 + cos lp' sin e
(6)

we can see the integration (lp' = 0-21T) associated with the odd function of lp' vanishes
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and we can obtain the stress fields of the type of eqn (2). Finally, the fundamental
solutions (Ire,. -pt;£* are expressed as follows.

(7)

Although the equations for <Tf:':*-7~t are not shown in eqn (7), they are expressed with
similar formula as aV--rf(. The integration associated with Ip' between Ip' = 0 and
Ip' = 21f are expressed with the combination of1,-19 which are defined in the following
equations, The integrant 1,-19 consist of the complete elliptic integrals of the first and
second kind[ll, 12]. In the following equations, Ip'( - Ip - 6) is replaced by a new
variable <p.

(2'lf I E
11 = Jo R3d<p=C' k ,2'

_ (2'lfCOS2 <p _ (l + 6k'2 + k'4}E - 4k'2(l + k'2}K
13 - Jo R3 dip - C 1 k4k,2

_ CZ'lf cos3 <p _ (3 + 29k,2 + 29k'4 + 3k'6)E - 2k'2(9 - 14k'2.+ 9k'4)K
14 - Jo R 3 d<p - C, 3k6k'2

_ (2'lf_l _ 2(1 +k"')E-k'2K
Is - Jo Rsd<P - C2 3k'4

_ (2'lfCOS<p _ 2(1 - k'2 + k'4)E - k'2(1 + k'2)K
16 - Jo R S d<p - C2 3k2k'4

_ e'lfcos2<p _ 2(1 - 3k'2 - 3k'4 + k'6)E - k'2(l - lOk'2 + k,4}K
I, - Jo RS d<p - C2 3k4k'4

(Sa)
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Fig. S. The infinitestimal curved line element C where body forces are applied.

R 2 = fl + t2 + (z - ,)2 - 2rt cos ql

C - 4 C _ 4
I - {(r + t)2 + (z _ ,)2pl2 ' 2 - {(r + t)2 + (z _ ,)2}5/2

P = 4rt k'2 = I _ k2

(r + t)2 + (z - ,)2 '

K = ('rr/2 dA
Jo VI - k2 sin2 A '

(8b)

(8c)

(8d)

(8e)

4. PROCEDURE' FOR NUMERICAL SOLUTIONS

Bending problems of various axi-symmetrical bodies can be numerically solved
using the fundamental solutions described in Section 3. In the present paper, the so
lutions for an infinite body containing a spheroidal cavity (Fig. 6) or a troidal cavity
(Fig. 7) are shown.

n
z

I------+~~r

Fig. 6. A spheroidal cavity in an infinite body under bending.
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4.1. Definition of body force densities
The body force densities Pn Pe and pz distributed in r, 6 and z direction are defined

in eqn (9).
dFr • dFe a dFz

pr cos Ip = t d' dip' Pe sm Ip = t ds dip , pz cos Ip = t t dt dip . (9)

The definition pz in eqn (9) is defined considering the bending stress field O'z = O'orla
cos <1>. Defining body force densities such as eqn (9) is not forced but suitable to getting
accurate numerical result.

4.2. Solution for a spheroidal cavity
Since the solution for this problem was given by Neuber, the accuracy of the

present solution can be checked by this problem. The procedure for the analysis of a
troidal cavity is almost the same as the problem of a spheroidal cavity.

4.2.1. Dividing boundaries. The boundary of the spheroidal cavity is divided
equally after the physical plane (rla2 + z21b2 = I) is mapped into a circle in a mapping
plane, that is, when we express the coordinate (r, z) on the ellipse by eqn (10), the
angle 1/1 is used for the parameter indicating the division.

r = a cos 1/1, z = b sin 1/1. (10)

The starting and the end points of I/Ijl, I/Ij2 of the j-th division along AB in Fig. 6 are
given by eqn (II).

(II)

The boundary AB' in Fig. 6 is also divided in the same way considering the symmetry.
The midpoints of each division are used for matching the boundary conditions. If we
call the division where the boundary conditions are to be satisfied the i-th division, the
coordinate of the midpoint of i-th division is given by eqn (12).

Wi = 2
1T

(i - 0.5).
III

(12)

Taking the symmetry with respect to the z = 0 into consideration, the same densities
of the body forces should be distributed at z = :t' of the j-th division.
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4.2.2. Calculation of influence coefficient. In this paper. the stresses induced at
the midpoint of the i-th division by the body force with unit density at the j-th division
are called influence coefficients. We need the influence coefficients cr~1, T~'/ etc. These
stresses can be, calculated by integrating (with respect to angle l\J) ~r' • ~( •... T;';'
that are given with the fundamental solution defined in Section 3 and by eqns (3) and
(4). If crl:1, cr~" and cr~r are taken as examples, they are written like eqn (13), where
the relation d' = (bla)t dl\J and dt = (alb)~ dl\J are used for rewriting.

i"'i2 b f -"'i2 b
cr~1 = ~r' - t dl\J + . ~r' - t dl\J

"'i' a -Wi! a

where (t, ,) is the coordinate of the application of body forces in the plane e = O. The
minus sign of the second term in the third equation of eqn (13) means that the body
force is applied in negative z-direction. The integration with respect to l\J is performed
numerically using Simpson's rule.

4.2.3. Determination of body force densities. The body force densities are de
termined solving the following 3nI linear equations which express the boundary con
ditions at the spheroidal surface.

(14)

n,

~ (PrjT~dj + P9j~~i + PZiT~~j) = 0
j-I

where rj is the r coordinate at the midpoint of the i-th division and IjJj is the angle
between the axis and the outerward normal at the same point. Once the body force
densities are determined, the stresses at an arbitrary point can easily be calculated by
using the body force densities and the stresses at the point due to unit body force
density which can be determined from eqn (13) similarly as the influence coefficients.

4.2.4. Special consideration on singular terms. When the body forces are applied
at the same points where the maximum stresses must be found, (5a)-(5c) become
singular. In this case, the influence of the body forces must be considered specially.
This analysis can be performed successfully, if we notice first the stresses at a separate
point and then take the limiting expression after the closed form integration along a
small boundary region on the assumption of plane strain. The result is written as eqn
(15). In the equation, the notation E means the small integrated region including the
point of the maximum stress (IjI = - E - E).

v
Llcrpr = - -- P

Z 1 - v "
A pz _ {3 + vl(l - V)}E
~(Jz - 21T pz· (15)

As easily understood, in case of i =j similar special integration must also be performed.

4.3. Solution for a troidal cavity
The method of analysis for a troidal cavity (Fig. 7) is similar to that for a spheroidal

cavity (Fig. 6). Then, the explanations of the details of numerical procedure are saved.
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Since this problems have symmetry with respect to the plane z = 0, the body force
must be applied considering the boundaries ABA' and AB'A' as a pair.

5. NUMERICAL RESULT AND DISCUSSION

Computer programs for the analysis of a spheroidal cavity and a tridal cavity were
coded on the basis of the fundamental solutions and the procedure of numerical analysis
described in Sections 2-4. The integral with respect to t\I in Section 4.2.2 was numer
ically performed by Sympson's rule with 10 dividing numbers. When the body forces
are distributed along the division under consideration of boundary condition (i.e. i =
j), or the maximum stresses at the end of major axis must be calculated, the dividing
number for numerical integral was increased by 10 times as that of other case.

5.1. Stress concentration ofa spheroidal cavity
Results of numerical analysis on a spheroidal cavities are shown in Table 1. The

stress concentration factor (SCF) in the present analysis were obtained by the extrap
olations of the results for two dividing number nl = 6 and 8; the results in [ ] of Table
1. The present results are in good agreement with the exact values by Neuber[13]. The
error is at most about 0.07% even for the values extrapolated from nl = 6 and 8.

5.2. Stress concentration ofa troidal cavity
No solution has been obtained for the problem of a troidal cavity with elliptical

section. However, in two limiting cases (the case of very small radius of a troid and
that of very large radius of a troid), the stress concentration factors can be compared
with the exact solution of a three-dimensional deep hyperbolic notch and that of a two
dimensional elliptical hole. First of all, in order to check the accuracy, a few cases for

Table I. Stress concentration factors of a spheroidal cavity in an
infinite body under bending

([~: : ~])
v = 0 v = 0.3

Present analysis Neuber Present analysis Neuber

a = O.5b 1250 [1.2474] 1.250 1 294 [1.2915] 1.293. 1.2481 . 1.2921

a = b 1 635 [1.6236] 1.635 1 710 [1.7038] 1.709. 1.6264 . 1.7053

a = 2b ., 460 [2.4337] 2.459 2.564 [;:;~] 2.564_. 2.4403

a = 4b [ 4.1085] 4.147 4.270 [ ::;:] 4.2734.149 4.1186

Table 2. Stress concentration factors Ki; of a troidal cavity
having a very small radius of a troid in an infinite body

under bending

(a= 2b [n1 = 16])
v = O. nl = 20

Present analysis Neuber

e/p = 1.0 1 28~ [1.2628J 1.292
(e/a = 0.25) . - 1.2672

e/p = 0.5 [ 1.I045J 1.155
(e/a = 0.125) 1.153 1.1142

SAS 22:1-e
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Fig. 8. A troidal cavity having a very small radius of a troid in an infinite body under bending
(v = O. c ~ a).

very small radius of a troid as shown in Fig. 8 were calculated. The results are shown
in Table 2. The values by Neuber[l4] in Table 2 are the exact SCF for three-dimensional
deep hyperbolic notches. SCFs in the present analysis were determined from the max
imum stress 0'max i at the inner end of major axis of troidal cavity. The bending moment
M was obtained by the numerical integration ofthe stress O'zi(r) at the minimum section
OA' in Fig. 8. Denoting SCF at the inner end of the cavity by K~. we have,

M = 4 LC L1\'/2 O'Zi(r)r cos2 0 dO dr

= 11' LC O'zi(r)r dr (16)

K* - O'maxi
ri-~,

O'ni
* 4MO'ni = -3

1I'C
(17)

where O':i is the nominal bending stress at the minimum section OA I • The extrapolations
were performed using the results for the dividing numbers nl = 16 and 20 (these num
bers correspond to the upper and lower values in [ D. The present results are in good
agreement with Neuber's exact solution[l4] for a deep hyperbolic notch with the same
values of root radius p.

Table 3 shows the results for other various cases. K ro is SCF at the outer end of
the troidal cavity. The values in square brackets are the results for nl = 12 and 16
respectively and the final values were extrapolated from these results. SCF and the
nominal stresses in these cases were defined as follows.

K . = O'maxi
II ,

O'ni

K
_ O'maxo

to - ,
O'no

O'ni = 0'0

h + a
O'no = 0'0 -- .

C

(18)

The stress concentrations in Table 3 are plotted in Fig. 9. As h/a - 00, the calculated
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Table 3. Stress concentration factors K,i. K", of a troidal cavity having a very large radius of a
'troid in an infinite body under bending

(
V .. O. [n l

.. 12])
n, .. 16

a" b a" 2b

Kli K", Kli K",

hlo .. 5 3281 [3.2731] 2 574 [2.5736] 5 566 [5.5539] 4283 [4.2835]
. 3.2751 · 2.5737 . 5.5569 · 4.2834

hla "" 10 [3.1469] 2 773 [2.7736] 5 "98 [5.2916] 4 623 [4.6242]3.151 3.1479 · 2.7734 .- 5.2931 · 4.6240

hlo .. 20 3.083 D:::] 2 887 [2.8877] 5.157 [;::;:] 4814 [4.8126]
· 2.8876 · 4.8130

hla .. 50 [3.0354] 2955 [2.9568]3.037 3.0358 · 2.9564

SCF of troidal cavities approaches the limiting value K, = 1 + 2a1b which is SCF of
an elliptical hole in an infinite plate under tension. Thus, the present numerical results
are in aood agreement with exact solutions in the two extreme limits; cia ~ 0 and hI
a'" 00. Therefore, the high accuracy of the present analysis between these two limiting
cases may be expected. Table 4 shows the numerical results for several cases between

z

o

B

·ft'oo.......~-A

h

Kto

6.0

Kti
~ l ~a:s~2b~ -o_--:;'------
i 5.0

:loC:

s-
o..
u
~
c 4.0
o.-..
~ Kt,'asb

13

.

0

r=l~~~==:=:===~=====:
III
III

f
~ 2.0

Kto

1.0~""""'---'----_L...-_--------'

1/50 1/20 1/10 a/h 1/5
Pia· 9. Stress concentration factors K,;. K,o for a very small radius of a troid in an infinite body
under bending (v .. O. h it> 0).
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Table 4. Stress concentration factors K,;. K", and K~ of a troidal cavity
in an infinite body under bending (v = 0.31

a = 0.5b a = b a = :'b

K,; = 3.627 K,; = 5.418 K,i = 9.100
hla = 1.5 Kro = 1.533 K,,, = 2.207 K,o = 3.582

K~ = 1.034 K~ = 1.142 K~ = 1.508

K,; = 2.944 K,; = 4.303 K,; = 7.330
hla = 2 K", = 1.597 K", = 2.327 K", = 3.803

K~ = 1.074 K~ = 1.277 K~ = 1.893

K,; = 2.456 K,; = 3.671 K,; = 6.281
hla = 3 K to = 1.691 K", = 2.488 K", = 4.093

K~ = 1.148 K~ = 1.524 K~ = 2.443

K,; = 2.205 K,; = 3.349 K,; = 5.688
hla = 5 K", = 1.792 K", = 2.658 K", = 4.395

K~ = 1.297 K~ = 1.867 K~ = 3.092

two limiting cases. Poisson's ratio is assumed 11 = 0.3 and the figures of four digits in
the table were extrapolated using the results for nl = 12 and 16.

Although SCF of troidal cavities is not so useful itself, it has the importance from
the viewpoint that the method of the analysis becomes the basis for the analysis of
cylindrical bar with a circumferential notch by relieving the stresses CTr , Trz and Tre at
the cylindrical surface r = h.

6. CONCLUSION

Stress concentration problems of an axially symmetrical body under bending were
solved by the body force method which has been used mainly for the analysis of plane
and axi-symmetric problems. First of all, the fundamental solutions were seeked. The
forms of the fundamental solutions in benidng are not so self-evident as tension and
torsion problems. In order to find the necessary and sufficient forms of the fundamental
solutions, the properties of the boundary conditions and those of stress fields due to
ring forces were compared. It was proved that three types of the fundamental solutions
are necessary and sufficient. They are two ring forces in rand z direction with the
intensity of cos <I> (<I> is angle measured from the position of CTmax ) and one ring force
in tangential direction with the intensity of sin <1>. The solution can be solved numerically
by superposing these three fundamental solutions. The accuracy of the numerical
method was checked by solving the bending problem of a spheroidal cavity. The max
imum error of the results was 0.07%. The numerical results for the bending problem
of a troidal cavity approached to the exact solution in the two limiting cases of the
shape of the troidal cavity. The accurate method developed for the stress concentration
analysis of a troidal cavity will be extended to the stress concentration analysis of a
notched cylindrical bar under bending in the second paper.
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